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Foam imbibition in microgravity

An experimental study
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Abstract. We report an experimental study of aqueous foam imbibition in microgravity with strict mass
conservation. The foam is in a Hele-Shaw cell. The bubble edge width ¢ is measured by image analysis.
The penetration of the liquid in the foam, the foam imbibition, the foam inflation, and the rigidity loss are
shown all to obey strict diffusion processes. The motion of bubbles needed for the foam inflation is a slow
two-dimensional process with respect to the one-dimensional capillary rise of liquid. The foam is found to

imbibes faster than it inflates.

PACS. 82.70.Rr Aerosols and foams — 83.80.I1z Emulsions and foams

1 Introduction

Foams are paradigms of disordered cellular systems. Bub-
bles composing foams are indeed characterized by a wide
variety of side numbers and face areas [1]. Among the
physical properties of interest, one can cite the topolog-
ical rearrangements [2—4], the cascades of popping bub-
bles [5,6], the rigidity loss transition [7], etc.

In aqueous foams, a fundamental process is the free
drainage [8] which is due to the competition between grav-
ity forces, viscous forces and capillary pressure in channels
separating adjacent bubbles. The drainage effects imply
that the top of the foam becomes dry while the bottom
of the foam remains wet. The dry foam is composed of
polyhedral bubbles meeting on thin edges, while the wet
foam is composed of spherical bubbles which can some-
times move freely [7]. In the absence of gravity (g = 0),
only capillary and viscous forces act [9].

Koehler et al. [10] have numerically and theoretically
studied these processes. They distinguished zero gravity
(9 = 0) and free drainage (g # 0) cases. They concluded
that in a free drainage process the foam evolves towards
a steady-state, i.e. a wet foam and a dry foam region.
Even though the results for g # 0 are those expected and
have been verified by Koehler et al. in [11], the g = 0 case
obviously needs to be experimentally studied. The present
letter deals with such a case.

An experimental study of foam wetting in micrograv-
ity is necessarily raising plenty of theoretical and prac-
tical questions [9]. The aims of the present work are (i)
to describe this experiment, and (ii) to study the dy-
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namical evolution of the foam liquid fraction in zero-
gravity conditions.

2 Experiments

Microgravity experiments were held during a parabolic
flight campaign organized by the European Space Agency
(ESA). About 30 parabolas have been dedicated to this
experiment.

Parabolic flights allow for 20s in microgravity with
an average acceleration less than ¢ = 0g £ 0.05g. Each
parabola is composed of three parts. The pull up which is
a hypergravity phase (a ~ 2¢), when the plane is inclined
at 37°. The microgravity is established at the top of the
parabolic trajectory. During the pull out, i.e. the end part
of the parabola, the vertical acceleration is again a ~ 2g.

The experimental procedure was the following. A soap-
water mixture was inserted in a vertical Hele-Shaw (HS)
cell. The commercial soap was mainly composed of dode-
cylsulfate (surface tension o = 0.03 N/m, viscosity n =
0.001 kgm~1s71). The HS cells were closed parallelipedic
vessels constituted of 2 pieces of Plexiglas (20 x 20 c¢m?)
distant of 0.2 cm from each other. This distance has been
judiciously chosen in order to form only one layer of bub-
bles, i.e. a two-dimensional foam. Before each parabola,
the HS cell was vigorously shaken for creating the foam.
The HS cell was placed vertically in a cage fixed to the
plane for enhancing the drainage before the micrograv-
ity phase. During the flights, a CCD camera recorded the
evolution of the foam. Image treatment and analysis have
been later performed in order to characterize the bubble
edges and the liquid motion in the foam.
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Fig. 1. (top) Image of the foam during the hypergravity phase.
The bottom is composed of small ‘wet’ bubbles while the top
is composed of large ‘dry’ bubbles. (bottom) The same foam
after 10 seconds of microgravity. All bubbles become spherical
and bubble walls thicken.

3 Results

Figure 1 presents the foam during the hyper- and micro-
gravity phases respectively. During the hypergravity phase
(top picture in Fig. 1), the bottom of the foam above the
liquid is composed of small “wet” bubbles while the top is
composed of large polygonal “dry” bubbles. Some bubble
motion due to the plane vibrations is seen at the bottom
of the foam. The moves concern the small bubbles only.

When the microgravity is established, the situation
changes drastically: the liquid invades the foam from be-
low such that the average thickness of all bubble edges in-
creases as seen in the lowest part of Figure 1. The bubbles
become more rounded and the rigidity of the foam is weak-
ened, allowing bubbles to slip on others and to move freely
due to the airplane vibrations. It should be noticed that
small bubbles become rounded first. The smallest ones are
also dragged by the rising liquid towards the top of the
foam (see the central part of the bottom picture). More-
over, the front separating wet and dry phases is well seen
to propagate from bottom to top on the video records.
Because of the liquid invasion in the foam, the distance
between adjacent bubbles grows and some bubbles move
down to the bottom of the HS cell. In other words, the
foam invades the liquid phase; the foam inflates. When
the microgravity phase ends, an acceleration of about 2g
leads to a fast and global drainage of the foam. The foam
returns to the initially dry situation quite rapidly, as in
the top picture.
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Fig. 2. Typical evolution of the bubble edges width ¢ as a
function of time ¢ for 4 different vertical positions h. Fits using
equation (1) are shown. The vertical line corresponds to the
beginning of the microgravity phase, t,, = 11 s in this example.
A break of £(t) is clearly observed at to > tm.

In order to quantify the wetting of the foam, the thick-
ness of the bubble edges has been measured by image
analysis. The video recording of each parabola has been
decomposed in a series of successive images at a rate of
10 frames per second. Each image has been numerically
modified for enhancing the bubble edges (bright parts of
Fig. 1). The image resolution is about 1072 cm, what
is sufficient to measure accurately the mean bubble edge
width since those edges are typically 1 mm wide. On any
horizontal line situated at a vertical position h on the
black and white images, the fraction of bubble edges ¢ is
measured. The parameter ¢ is given in units of the im-
age width such that 0 < £ < 1. A large value of ¢ cor-
responds to a wet foam, while a small value of £ is the
signature of a dry foam. One should note that the origin
of h has been judiciously chosen such that the bottom of
the foam corresponds to h = 0 at the end of the pull-up.
We have analyzed more than 2500 images taken during
30 parabolas.

Figure 2 presents the typical evolution of the bub-
ble edges width ¢ as a function of time ¢ for 4 different
vertical positions h. Each dot corresponds to an average
over 5 measurements, i.e. 5 parabolas. Only the pull-up
phase and the microgravity phase are illustrated on Fig-
ure 2. The microgravity startup time t,, is emphasized
by the vertical line. All curves exhibit a break at some
time tg > t,,.

The features of ¢ should be interpreted differently for
h > 0 and h < 0. Consider first the case h > 0, e.g.
h = 0.64 cm and h = 1.28 cm. During the hypergrav-
ity phase, the foam is rigid and bubble edges are very
thin. A small value of ¢ (=~ 0.2) is seen in Figure 2 to
be slightly decreasing with time, due to the acceleration
phase. After the microgravity phase begins, a rapid growth
of £ is observed. This corresponds to the imbibition of the
foam, more precisely the invasion of the liquid along bub-
ble edges. The liquid fraction saturates after some time.



H. Caps et al.: Foam imbibition in microgravity

20

®

18

16 N
—4

14

12 _%_. +\ _+=‘_0

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
h (cm)

to (s)

p—

Fig. 3. The time to needed for the liquid to reach a height
h > 0. A fit using equation (2) is shown.

The dynamics of liquid invasion can thus be extracted
from h > 0 measurements.

Consider now the h < 0 curves of Figure 2, e.g. h =
—0.48 cm and h = —0.64 cm. During the hypergravity
phase, only a few round bubbles are moving at the bottom
of the foam due to plane vibrations. This implies £ # 0
on average even for h < 0. As the microgravity phase
begins at t,,, the liquid invades the foam which “inflates”
since the bubbles are allowed to move towards the bottom
of the HS. For ¢t > t,,, a rapid growth of ¢ is observed,
which corresponds to the invasion of the foam into the
fluid phase. The bubble edges width ¢ is seen to saturate
about 10 seconds after t,,. Using the h < 0 data, we can
thus study the invasion of the foam into the fluid phase,
namely the foam inflation dynamics.

We thus see that the evolution of the inter bubble chan-
nel width £ is a relevant parameter in order to characterize
the foam evolution. Considering that ¢ saturates during
the microgravity phase, we have assumed the empirical
law

’ a+b(t—t0) ift <ty
" la+c(l —exp(=(t—to)/7)) elsewhere

where a, b, ¢, T and tg are 5 free fitting parameters at each
height h; a, b and ¢ being geometrical parameters. The
relevant physical parameters for our study are: the time
to at which the bubble edges become to grow for a given
height h and the characteristic time 7 of wetting. Both
parameters will be examined separately. Fits are shown in
Figure 2.

The parameter tg is different from t¢,, since there is
a time delay needed for the liquid to reach the vertical
position kA > 0 or the foam to invade the liquid phase for
h < 0. Figure 3 presents the time ¢y needed to the liquid
to reach the vertical position h > 0. We have fitted the
results by a general power law, and have found a power
exponent close to 2. Thus, the wet front position behaves
like

h=/Du(to — tm) . 2)
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Fig. 4. The time ¢y needed for the bubbles to fall down to a
position h < 0. A fit using equation (5) is shown.

The liquid rise (imbibition) in the initially dry foam is
clearly a diffusive process with a coefficient D,, = 1.19 £
0.07 cm?s~! for commercial soaps. Within the formalism
of the drainage equation [11], in the case of node domi-
nated drainage in the absence of gravity, the imbibition of
the foam is found to obey a diffusion law. The diffusivity
D reads .

D= 277K oL, (3)
where L is the bubble edge length, K is some permeability
factor depending on the foam, § is a pre-factor depend-
ing on the bubble edges. In [11] Koelher et al. estimate
K = 0.002 and 6 = 0.41. Considering the surface tension
o and viscosity 1 values of our experiment, the diffusivity
D is expected to be D =1.2 L cm?s™!, with L ~ 0.6 cm
here. The theoretical value is thus of same order of mag-
nitude as that we measured, despite the fact that some
theory hypotheses [11] are not encountered here. Indeed,
(i) the monodisperse approximation is obviously not en-
countered, (ii) a continuum approximation is not trivially
obeyed (for example, the size of our samples is not much
larger than the bubble size), (iii) the channel width fluc-
tuations are usually not much larger than the bubble size.
Nevertheless, equation (3) may give us an idea on how the
diffusivity depends on the geometrical parameters of the
foam and on the physical properties of the fluid. Let us
write

D=U"L, (4)

where U™ is a characteristic imbibition velocity depending
on the permeability K, on the value of §, and the fluid
properties 1 and o. For the foam imbibition, we estimate
Uy =~ 2 cms™! what is in good agreement with direct
observations.

In addition to the liquid propagation, invasion of the
foam into the fluid phase — what we call “foam inflation”
— is observed. The dynamics of this process is captured by
the parameter tg for h < 0 and is illustrated in Figure 4.
The foam inflation behaves like

—h = /Dty — tm) . (5)
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Fig. 5. Characteristic rigidity loss time 7 as a function of the
height A > 0. The fit uses equation (7).

The foam inflation is also a diffusive process with a coeffi-
cient D; = 0.214£0.02 cm? s here. The characteristic speed
of this process is U¥ = 0.35 cms~!. It is readily observed
that D,, > D;. The motion of bubbles needed for the foam
inflation is a slow two-dimensional process with respect to
the one-dimensional capillary rise of liquid. In short, the
foam wets faster than it inflates.

An interpretation of the difference between D,, and D;
comes from the incompressibility of both air and liquid.
The flux of water rising in the bubble edges must be equal
to the flux of air invading the fluid phase by the way of
bubbles. In 2D, this relation reads

¢, Uy = LU (6)
The bubble edge width /¢, is typically 1 mm while the
bubble edge length L is nearly 0.6 cm. The bubble edge
length-width ratio is thus typically L/¢, = 6 and is so
equal to the ratio U} /UZ. Thus, the characteristics speed
of the imbibition process is 6 times larger than the char-
acteristic speed of the foam inflation process.

Measurements of the time t¢ at which the bubble edges
become to grow allowed us to characterize the imbibition
of the foam as well as the invasion of the foam into the
fluid. However, the study of the dynamical parameter 7
of the bubble edge growth may give us some informations
on the foam properties. Once adjacent bubbles are im-
bibed by the rising liquid, they start to move apart be-
cause the bubble separation increases. This process tends
to decrease the foam rigidity. Eventually, the bubbles can
move independently. The rigidity loss is closely related to
the imbibition of the foam: the faster rises the front of wa-
ter, the faster is this process. Informations on the dynam-
ics of rigidity loss can thus be captured by the parameter
7 for h > 0. In Figure 5, we report the measurement of
7 as a function of the vertical position h > 0. We have
found that a quadratic expression fits the data. One has

h = \/DTT; (7)

meaning that the bubbles take a long time to separate at
the bottom of the HS cell. A diffusive law is found, with
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Fig. 6. Characteristic horizontal diffusion time 7 as a function
of the height h < 0. Fit using equation (8) is illustrated.

Table 1. The different diffusion coefficients measured in our
experiment. The liquid rise (wetting) is characterized by D.,.
The foam inflation is characterized by D;. The rigidity loss is
characterized by D,. The motion of individual bubbles in the
wet phase is characterized by Dp,.

h>0 to Dy=1194+0.07 cm®s™?!
T D, =0.68 £0.07 cm?s™!

h<0 to D; =0.21 £0.02 cm?s™?
7 Dp =0.03540.002 cm?s™?

a diffusivity D, = 0.68 cm?s~!. Figure 6 shows the mea-
surement of 7 as a function of the vertical position h < 0.
This represents the horizontal motion of bubbles under
the initial water-foam interface once the foam inflates. In-
deed, a rapid saturation of the bubble edges width means
that a “steady-state” is shortly reached. This process also
follow a diffusion law

—h=+/Dpr, (8)

with a small coefficient D,,. The motion amplitude of the
bubbles in a wet phase is indeed quite small. In Table 1,
the values of the various diffusion coefficients encountered
in the present study are given.

Integrating the so-called drainage equation (for g = 0),
Koehler et al. [11] predicted a diffusive behavior for the
volume fraction of liquid in the foam. The qualitative
agreement between this theory and our experiment is as-
tounding in spite the crude approximations (continuity for
example) made in this theory.

As mentioned before, the bubble edge evolution should
depend on the physical parameters (surface tension, vis-
cosity, bubble size. ..). The values of the D,,, D,, D; and
D,, are not universal. The diffusive motion is thus the key
process during foam imbibition, foam inflation and rigidity
loss.

In summary, our experiments show that in micrograv-
ity, foam imbibition obeys diffusive processes. This behav-
ior was predicted by Koehler et al. [11] within the drainage
equation formalism. As far as we know, it is the first time
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that this dynamical characteristics is obtained experimen-
tally in microgravity conditions. Moreover, we have noted
that the foam imbibition (“foam wetting”) can be viewed
in terms of capillary rise, bubble motion and rigidity loss.
All these processes obeying diffusive behaviors.
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